IL-17A Mediates Early Post-Transplant Lesions after Heterotopic Trachea Allotransplantation in Mice
نویسندگان
چکیده
Primary graft dysfunction (PGD) and bronchiolitis obliterans (BO) are the leading causes of morbidity and mortality after lung transplantation. Reports from clinical and rodent models suggest the implication of IL-17A in either PGD or BO. We took advantage of the heterotopic trachea transplantation model in mice to study the direct role of IL-17A in post-transplant airway lesions. Across full MHC barrier, early lesions were controlled in IL-17A(-/-) or anti-IL17 treated recipients. In contrast, IL-17A deficiency did not prevent subsequent obliterative airway disease (OAD). Interestingly, this early protection occurred also in syngeneic grafts and was accompanied by a decrease in cellular stress, as attested by lower HSP70 mRNA levels, suggesting the involvement of IL-17A in ischemia-reperfusion injury (IRI). Furthermore, persistence of multipotent CK14(+) epithelial stem cells underlined allograft protection afforded by IL-17A deficiency or neutralisation. Recipient-derived γδ(+) and CD4(+) T cells were the major source of IL-17A. However, lesions still occurred in the absence of each subset, suggesting a high redundancy between the innate and adaptive IL-17A producing cells. Notably, a double depletion significantly diminished lesions. In conclusion, this work implicated IL-17A as mediator of early post-transplant airway lesions and could be considered as a potential therapeutic target in clinical transplantation.
منابع مشابه
Interleukin-17A Mediates Acquired Immunity to Pneumococcal Colonization
Although anticapsular antibodies confer serotype-specific immunity to pneumococci, children increase their ability to clear colonization before these antibodies appear, suggesting involvement of other mechanisms. We previously reported that intranasal immunization of mice with pneumococci confers CD4+ T cell-dependent, antibody- and serotype-independent protection against colonization. Here we ...
متن کاملHeterotopic and Orthotopic Tracheal Transplantation in Mice used as Models to Study the Development of Obliterative Airway Disease
Obliterative airway disease (OAD) is the major complication after lung transplantations that limits long term survival (1-7). To study the pathophysiology, treatment and prevention of OAD, different animal models of tracheal transplantation in rodents have been developed (1-7). Here, we use two established models of trachea transplantation, the heterotopic and orthotopic model and demonstrate t...
متن کاملInterleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice.
OBJECTIVE Interleukin(IL)-17A, an inflammatory cytokine, has been implicated in atherosclerosis, in which inflammatory cells within atherosclerotic plaques express IL-17A. However, its role in the development of atheroscelrosis remains to be controversial. METHODS AND RESULTS To directly examine the role of IL-17A in atherosclerosis, we generated apolipoprotein E (ApoE)/IL-17A double-deficien...
متن کاملIL-1 and IL-23 Mediate Early IL-17A Production in Pulmonary Inflammation Leading to Late Fibrosis
BACKGROUND Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mi...
متن کاملIL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice.
The role of IL-17 in atherogenesis remains controversial. We previously reported that the TLR/MyD88 signaling pathway plays an important role in high-fat diet as well as Chlamydophila pneumoniae infection-mediated acceleration of atherosclerosis in apolipoprotein E-deficient mice. In this study, we investigated the role of the IL-17A in high-fat diet (HFD)- and C. pneumoniae-induced acceleratio...
متن کامل